# Citric Acid Enhanced Metal Removal in Stormwater Basins

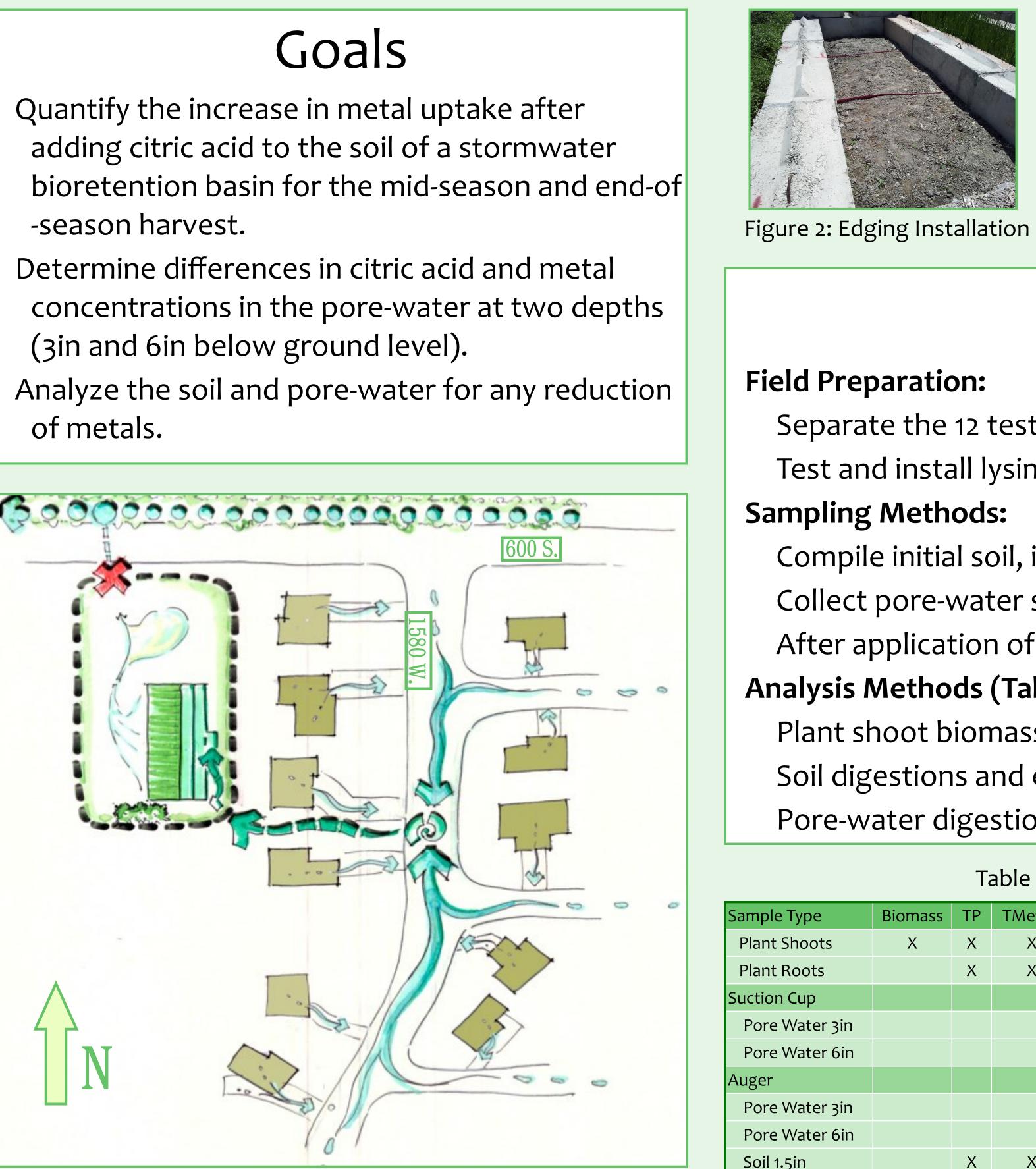



Figure 1: Schematic of Stormwater Runoff Convergence and Collection at the Green Meadows Field Site



### Allison Albert, Utah State University

Research Mentors: Dr. R. Ryan Dupont & Margie Borecki, Civil and Environmental Engineering, Utah State University



Figure 3: Lysimeter Field Test



### Methodology

Separate the 12 test bays into 3 sections by installing 6in depth edging Test and install lysimeters (porous cup soil water samplers)

Compile initial soil, irrigation water, and pore-water samples Collect pore-water samples after citric acid application After application of citric acid, collect soil and plant shoot sub-samples

### Analysis Methods (Table 1):

Plant shoot biomass measurements and digestions

- Soil digestions and extractions
- Pore-water digestions

| Table 1: Analysis Methods for Field Study Samples |         |    |         |    |    |    |         |         |          |        |              |        |        |
|---------------------------------------------------|---------|----|---------|----|----|----|---------|---------|----------|--------|--------------|--------|--------|
| ample Type                                        | Biomass | TP | TMetals | ΤN | рН | EC | Citrate | TDN/TDP | AvMetals | %Water | BioAv. Metal | BioAvN | BioAvP |
| Plant Shoots                                      | Х       | Х  | Х       | Х  |    |    |         |         |          |        |              |        |        |
| Plant Roots                                       |         | Х  | Х       | Х  |    |    |         |         |          |        |              |        |        |
| iction Cup                                        |         |    |         |    |    |    |         |         |          |        |              |        |        |
| Pore Water 3in                                    |         |    |         |    | Х  | Х  | Х       | Х       |          |        |              |        |        |
| Pore Water 6in                                    |         |    |         |    | Х  | Х  | Х       | Х       |          |        |              |        |        |
| uger                                              |         |    |         |    |    |    |         |         |          |        |              |        |        |
| Pore Water 3in                                    |         |    |         |    |    |    |         |         | Х        |        |              |        |        |
| Pore Water 6in                                    |         |    |         |    |    |    |         |         | Х        |        |              |        |        |
| Soil 1.5in                                        |         | Х  | Х       | Х  |    |    |         |         |          | Х      | Х            | Х      | Х      |
| Soil 3in                                          |         | Х  | Х       | Х  |    |    |         |         |          | Х      | Х            | Х      | Х      |
| Soil 6in                                          |         | Х  | Х       | Х  |    |    |         |         |          | Х      | Х            | Х      | Х      |

Figure 4: Lysimeter Lab Test

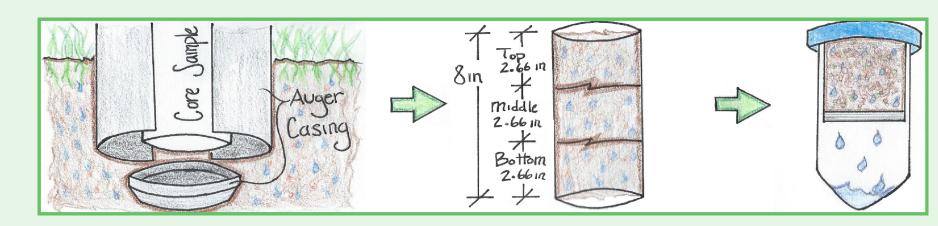
## Initial Results (Table 2)

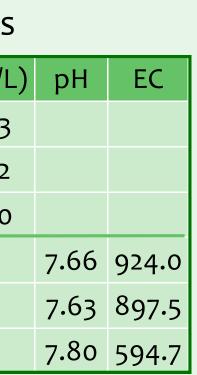
**Pore-water** (PW) extracted from soil samples (Figure 5) or lysimeters.

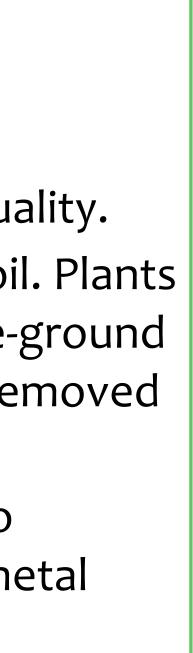
Water samples were collected from the irrigation system.

 Table 2: Initial Pore-water and Water Results

|                  | Pb (µg/L)  | As (µg/L) | Zn (µg/L) | Cu (µg/L) | Ba (µg/ |
|------------------|------------|-----------|-----------|-----------|---------|
| PW Top 2.66in    | 0.83       | 32.75     | 64.56     | 179.09    | 248.33  |
| PW Middle 2.66in | 0.62       | 11.12     | 46.45     | 15.17     | 256.32  |
| PW Bottom 2.66in | 0.41 (bdl) | 10.33     | 46.43     | 11.93     | 248.50  |
| PW at 3in Depth  |            |           |           |           |         |
| PW at 6in Depth  |            |           |           |           |         |
| Irrigation Water |            |           |           |           |         |





Figure 5: Retrieval of Pore-water from Soil


### Impact

Bioretention basins are used to reduce stormwater flow and increase water quality.

- These basins accumulate metals in the soil. Plants uptake dissolved metals into the above-ground biomass, which can be harvested and removed offsite.
- This study quantifies citric acid's ability to enhance phytoextraction and reduce metal buildup in the soil.







